In [2]:
import numpy as np
In [3]:
n = 5
In [4]:
n ** 5
Out[4]:
In [5]:
np.int8
Out[5]:
In [12]:
arr1 = np.array([1,5,6,9,45,-4])
In [13]:
arr2 = np.array([0.1, 0.8, 0.9, -0.45])
In [21]:
arr3 = np.array([4, -2, -45, 47, 129], dtype=np.int8)
In [9]:
arr1[0]
Out[9]:
In [17]:
arr2[2]
Out[17]:
Array Types¶
In [15]:
arr1
Out[15]:
In [16]:
arr1.dtype
Out[16]:
In [18]:
arr2.dtype
Out[18]:
In [22]:
arr3.dtype
Out[22]:
In [23]:
arr4 = np.array(['a', 'b', 'c'])
In [24]:
arr4.dtype
Out[24]:
Dimensions and Shapes¶
In [25]:
A = np.array([
[45, 58, 1],
[-55, -14, -21]
])
In [26]:
A.shape
Out[26]:
In [28]:
A.dtype
Out[28]:
In [27]:
A.nbytes
Out[27]:
In [29]:
A.size
Out[29]:
In [34]:
B = np.array([
[
[1, 2, 3],
[-1, -2, -3]
],
[
[11, 22, 33],
[-11, -22, -33]
]
])
In [35]:
B.shape
Out[35]:
In [37]:
B.ndim
Out[37]:
Indexing and Slicing of Matrices¶
In [38]:
# Square matrix
A = np.array([
[1,2,3], #0
[4,5,6], #1
[7,8,9] #2
])
In [39]:
A[2]
Out[39]:
In [40]:
A[0][1]
Out[40]:
In [41]:
A[0:2]
Out[41]:
In [43]:
A[:1][0:]
Out[43]:
In [45]:
A[2] = np.array([10,10,10])
In [46]:
A
Out[46]:
In [57]:
A[0] = -20
In [58]:
A
Out[58]:
Summary Statistics¶
In [59]:
a = np.array([5, 9, -45, -4, 54, 1])
In [60]:
a.sum()
Out[60]:
In [61]:
a.mean()
Out[61]:
In [62]:
a.var()
Out[62]:
In [63]:
A.sum()
Out[63]:
In [65]:
A.mean()
Out[65]:
In [66]:
A.sum(axis=1) # Per row
Out[66]:
In [67]:
A.sum(axis=0) # Per column
Out[67]:
In [ ]: