LSTM Demo on Oze Dataset¶
In [1]:
!pip3 install -q --upgrade pip tqdm torch==1.3.1+cpu torchvision==0.4.2+cpu -f https://download.pytorch.org/whl/torch_stable.html
In [2]:
import numpy as np
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
import seaborn as sns
from src.dataset import OzeDataset
from src.Benchmark import LSTM
from src.utils import compute_loss, visual_sample
In [3]:
# Training parameters
DATASET_PATH = 'dataset_sample.npz'
BATCH_SIZE = 4
NUM_WORKERS = 4
LR = 2e-4
EPOCHS = 10
# Model parameters
K = 672 # Time window length
d_model = 64 # Lattent dim
n_layer = 4 # Number of LSTM layers
d_input = 37 # From dataset
d_output = 8 # From dataset
# Config
sns.set()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device {device}")
Training¶
Load dataset¶
In [4]:
!wget deepnet.fr/challenge_oze/sample_dataset/{DATASET_PATH}
In [5]:
ozeDataset = OzeDataset(DATASET_PATH)
dataset_train, dataset_val, dataset_test = random_split(ozeDataset, (250, 125, 125))
dataloader_train = DataLoader(dataset_train,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS,
pin_memory=False
)
dataloader_val = DataLoader(dataset_val,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS
)
dataloader_test = DataLoader(dataset_test,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS
)
Load network¶
In [6]:
# Load transformer with Adam optimizer and MSE loss function
net = LSTM(d_input, d_model, d_output, n_layer).to(device)
optimizer = optim.Adam(net.parameters(), lr=LR)
loss_function = nn.MSELoss()
Train¶
In [7]:
# Prepare loss history
hist_loss = np.zeros(EPOCHS)
hist_loss_val = np.zeros(EPOCHS)
for idx_epoch in range(EPOCHS):
running_loss = 0
with tqdm(total=len(dataloader_train.dataset), desc=f"[Epoch {idx_epoch+1:3d}/{EPOCHS}]") as pbar:
for idx_batch, (x, y) in enumerate(dataloader_train):
optimizer.zero_grad()
# Propagate input
netout = net(x.to(device))
# Comupte loss
loss = loss_function(y.to(device), netout)
# Backpropage loss
loss.backward()
# Update weights
optimizer.step()
running_loss += loss.item()
pbar.set_postfix({'loss': running_loss/(idx_batch+1)})
pbar.update(x.shape[0])
train_loss = running_loss/len(dataloader_train)
val_loss = compute_loss(net, dataloader_val, loss_function, device).item()
pbar.set_postfix({'loss': train_loss, 'val_loss': val_loss})
hist_loss[idx_epoch] = train_loss
hist_loss_val[idx_epoch] = val_loss
plt.plot(hist_loss, 'o-', label='train')
plt.plot(hist_loss_val, 'o-', label='val')
_ = plt.legend()
Validation¶
In [8]:
_ = net.eval()
Plot results sample¶
In [9]:
visual_sample(dataloader_test, net, device)
plt.savefig("fig")
Evaluate on the test dataset¶
In [10]:
predictions = np.empty(shape=(len(dataloader_test.dataset), 672, 8))
idx_prediction = 0
with torch.no_grad():
for x, y in tqdm(dataloader_test, total=len(dataloader_test)):
netout = net(x.to(device)).cpu().numpy()
predictions[idx_prediction:idx_prediction+x.shape[0]] = netout
idx_prediction += x.shape[0]
In [11]:
fig, axes = plt.subplots(8, 1)
fig.set_figwidth(20)
fig.set_figheight(40)
plt.subplots_adjust(bottom=0.05)
occupancy = (dataloader_test.dataset.dataset._x.numpy()[..., dataloader_test.dataset.dataset.labels["Z"].index("occupancy")].mean(axis=0)>0.5).astype(float)
y_true_full = dataloader_test.dataset.dataset._y[dataloader_test.dataset.indices].numpy()
for idx_label, (label, ax) in enumerate(zip(dataloader_test.dataset.dataset.labels['X'], axes)):
# Select output to plot
y_true = y_true_full[..., idx_label]
y_pred = predictions[..., idx_label]
# Rescale
y_true = dataloader_test.dataset.dataset.rescale(y_true, idx_label)
y_pred = dataloader_test.dataset.dataset.rescale(y_pred, idx_label)
# Compute delta, mean and std
delta = np.abs(y_true - y_pred)
mean = delta.mean(axis=0)
std = delta.std(axis=0)
# Plot
# Labels for consumption and temperature
if label.startswith('Q_'):
y_label_unit = 'kW'
else:
y_label_unit = '°C'
# Occupancy
occupancy_idxes = np.where(np.diff(occupancy) != 0)[0]
for idx in range(0, len(occupancy_idxes), 2):
ax.axvspan(occupancy_idxes[idx], occupancy_idxes[idx+1], facecolor='green', alpha=.15)
# Std
ax.fill_between(np.arange(mean.shape[0]), (mean - std), (mean + std), alpha=.4, label='std')
# Mean
ax.plot(mean, label='mean')
# Title and labels
ax.set_title(label)
ax.set_xlabel('time', fontsize=16)
ax.set_ylabel(y_label_unit, fontsize=16)
ax.legend()
plt.savefig('error_mean_std')