In [2]:
import pandas as pd
In [3]:
toy_dataset = pd.read_csv('Churn Modeling.csv')
toy_dataset.head()
Out[3]:
exercise: Check that the probability of a person withdrawing their account using the law of total probability is the same as we calculated in the previous assignments
$P(A)=P(A|B)\times P(B)+P(A|B')\times P(B')$
With B= the person is Female.
In [ ]:
In [4]:
data_E = toy_dataset[(toy_dataset["Exited"]==1)]
data_FE = toy_dataset[(toy_dataset["Gender"] == "Female") & (toy_dataset["Exited"]==1)]
data_F= toy_dataset[toy_dataset["Gender"] == "Female"]
data_M= toy_dataset[toy_dataset["Gender"] == "Male"]
data_ME = toy_dataset[(toy_dataset["Gender"] == "Male") & (toy_dataset["Exited"]==1)]
PFE=data_FE.shape[0]/data_F.shape[0]
PME=data_ME.shape[0]/data_M.shape[0]
PFE*(data_F.shape[0]/toy_dataset.shape[0])+PME*(data_M.shape[0]/toy_dataset.shape[0]),data_E.shape[0]/toy_dataset.shape[0]
Out[4]:
In [ ]:
In [ ]: