Quiz11

Last updated: June 23rd, 20202020-06-23Project preview

QUIZ 11

DSP RELATED (.COM)

Linear time-invariant (LTI) systems have a useful commutative property where their sequential order can be rearranged with no change in their final outputs.This situation, described in almost every DSP textbook, is shown in Figure 1 where two different LTI systems are configured in series. Swapping the order of two cascaded LTI systems does not alter the final output. That is, y1(n) is always equal to y2(n).

title

title

The textbooks don't come right out and say it but they strongly imply that swapping the order of the two systems in Figure 1 is not permitted if either System #1 or System #2 is not LTI.

Now consider the cascaded system, that I encountered recently, shown in Figure 2(a). Variable n is the integer time index, k is a real-valued frequency variable, and N is a positive integer. The multiplication in Stage #2 is not LTI because it is not time-invariant.

Quiz Question: Under what condition can we swap the order of the stages in Figure 2(a) to create Figure 2(b) such that y1[n] = y2[n]

Pick one:

  • When k is negative
  • When k is an integer
  • When 2πk(n-1)/N is aperiodic
  • None of the above
In [1]:
import numpy as np
import matplotlib.pyplot as plt
M = 20 # Signal length
mu, sigma = 0, 1
x_n = np.zeros(50) 
n = np.arange(-25, 25)  # n is from -25 to 24
x_n[25 - M//2:25 + M//2] =  np.random.normal(mu, sigma, M)  # Random signal from index -10 to 10
In [2]:
def system_1_delay(x, N):
    ''' Delays input's output
    by delay N, AND sums with Input
    
    inputs:
    x : input
    N : Delay number
    
    output 
    y : delayed input + input
        x[n-N] + x[n]
    '''
    y = np.zeros(len(x))
    
    if N>0:
        y[N:] = x[:-N]
    elif N<0:
        y[:N] = x[-N:]
    else:
        y = x[:]
    
    return x + y
In [3]:
def system_2_cos(x, k, N):
    ''' Multiply input sequence x[n] by cos(2*np.pi*k*n/N)
    
    
    inputs:
    x : input
    k : real-valued frequency variable
    N : Integer 
    
    output 
    y : delayed input 
        x[n-N]
    '''
    N = int(N) # Ensure Integer
    n = np.arange(-25, 25)
    y = x * np.cos(2*np.pi*k*n/N)
    return y
In [4]:
def show_outputs(k, N):
    fig, ax = plt.subplots(1,1, figsize=(16,6))
    ax.stem(n, x_n, use_line_collection = True)
    ax.set(xlabel='n', title='x[n]')
    fig, ax = plt.subplots(1,1, figsize=(16,6))
    plt.cla()
    
    ax.stem(n, system_1_delay(system_2_cos(x_n, k, N), N), 
            linefmt ='b', markerfmt= 'bo', use_line_collection = True, label='Fig2-a')
    ax.stem(n+0.2, system_2_cos(system_1_delay(x_n, N), k, N),
            linefmt ='r', markerfmt= 'ro', use_line_collection = True, label='Fig2-b')
    ax.set_title(''.join(['k= ' , str(k), ', N= ', str(N) , ',  k/N= ', str(k/N)]))
    ax.set_xlabel('n')
    #     print(k,  N)
    ax.legend()
    
In [5]:
%%capture
!pip install ipywidgets
In [6]:
from ipywidgets import FloatSlider, IntSlider
from ipywidgets import interact, interactive, fixed, interact_manual
interact(show_outputs,k=FloatSlider(min=-15, max=15, step=0.2), 
         N = IntSlider(min=1, max=15, step=1, value=10), continuous_update=False);
In [ ]:
 
Notebooks AI
Notebooks AI Profile20060